
Active Deformable Part Models Inference

Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

GRASP Laboratory, University of Pennsylvania
3330 Walnut Street, Philadelphia, PA 19104, USA?

Abstract. This paper presents an active approach for part-based ob-
ject detection, which optimizes the order of part filter evaluations and
the time at which to stop and make a prediction. Statistics, describing
the part responses, are learned from training data and are used to for-
malize the part scheduling problem as an o✏ine optimization. Dynamic
programming is applied to obtain a policy, which balances the number
of part evaluations with the classification accuracy. During inference, the
policy is used as a look-up table to choose the part order and the stopping
time based on the observed filter responses. The method is faster than
cascade detection with deformable part models (which does not optimize
the part order) with negligible loss in accuracy when evaluated on the
PASCAL VOC 2007 and 2010 datasets.

1 Introduction

Part-based models such as deformable part models (DPM) [7] have become the
state of the art in today’s object detection methods. They o↵er powerful repre-
sentations which can be learned from annotated datasets and capture both the
appearance and the configuration of the parts. DPM-based detectors achieve un-
rivaled accuracy on standard datasets but their computational demand is high
since it is proportional to the number of parts in the model and the number
of locations at which to evaluate the part filters. Approaches for speeding-up
the DPM inference such as cascades, branch-and-bound, and multi-resolution
schemes, use the responses obtained from initial part-location evaluations to re-
duce the future computation. This paper introduces two novel ideas, which are
missing in the state-of-the-art methods for speeding up DPM inference.

First, at each location in the image pyramid, a part-based detector has to
make a decision: whether to evaluate more parts and in what order or to stop and
predict a label. This decision can be treated as a planning problem, whose state
space consists of the set of previously used parts and the confidence of whether
an object is present or not. While existing approaches rely on a predetermined
sequence of parts, our approach optimizes the order in which to apply the part
filters so that a minimal number of part evaluations provides maximal classi-
fication accuracy at each location. Our second idea is to use a decision loss in

?
Financial support through the following grants: NSF-IIP-0742304, NSF-OIA-1028009, ARL
MAST CTA W911NF-08-2-0004, ARL Robotics CTA W911NF-10-2-0016, NSF-DGE-0966142,
NSF-IIS-1317788 and TerraSwarm, one of six centers of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA is gratefully acknowledged.

2 Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

Fig. 1: Active DPM Inference: A deformable part model trained on the PASCAL
VOC 2007 horse class is shown with colored root and parts in the first column. The
second column contains an input image and the original DPM scores as a baseline.
The rest of the columns illustrate the ADPM inference which proceeds in rounds. The
foreground probability of a horse being present is maintained at each image location
(top row) and is updated sequentially based on the responses of the part filters (high
values are red; low values are blue). A policy (learned o↵-line) is used to select the
best sequence of parts to apply at di↵erent locations. The bottom row shows the part
filters applied at consecutive rounds with colors corresponding to the parts on the left.
The policy decides to stop the inference at each location based on the confidence of
foreground. As a result, the complete sequence of part filters is evaluated at very few
locations, leading to a significant speed-up versus the traditional DPM inference. Our
experiments show that the accuracy remains una↵ected.

the optimization, which quantifies the trade-o↵ between false positive and false
negative mistakes, instead of the threshold-based stopping criterion utilized by
most other approaches. These ideas have enabled us to propose a novel object
detector, Active Deformable Part Models (ADPM), named so because of the
active part selection. The detection procedure consists of two phases: an o↵-line
phase, which learns a part scheduling policy from training data and an online
phase (inference), which uses the policy to optimize the detection task on test
images. During inference, each image location starts with equal probabilities for
object and background. The probabilities are updated sequentially based on the
responses of the part filters suggested by the policy. At any time, depending on
the probabilities, the policy might terminate and predict either a background
label (which is what most cascaded methods take advantage of) or a positive
label. Upon termination all unused part filters are evaluated in order to obtain
the complete DPM score. Fig. 1 exemplifies the inference process.

We evaluated our approach on the PASCAL VOC 2007 and 2010 datasets [5]
and achieved state of the art accuracy but with a 7 times reduction in the number
of part-location evaluations and an average speed-up of 3 times compared to the
cascade DPM [6]. This paper makes the following contributions to the state
of the art in part-based object detection:

Active Deformable Part Models Inference 3

1. We obtain an active part selection policy which optimizes the order of the
filter evaluations and balances number of evaluations with the classification
accuracy based on the scores obtained during inference.

2. The ADPM detector achieves a significant speed-up versus the cascade DPM
without sacrificing accuracy.

3. The approach is independent of the representation. It can be generalized to
any classification problem, which involves a linear additive score and uses
several parts (stages).

2 Related Work

We refer to work on object detection that optimizes the inference stage rather
than the representations since our approach is representation independent. We
show that the approach can use the traditional DPM representation [7] as well as
lower-dimansional projections of its filters. Our method is inspired by an accel-
eration of the DPM object detector, the cascade DPM [6]. While the sequence of
parts evaluated in the cascade DPM is predefined and a set of thresholds is deter-
mined empirically, our approach selects the part order and the stopping time at
each location based on an optimization criterion. We find the closest approaches
to be [21,24,9,12]. Sznitman et al. [21] maintain a foreground probability at each
stage of a multi-stage ensemble classifier and determine a stopping time based
on the corresponding entropy. Wu et al. [24] learn a sequence of thresholds by
minimizing an empirical loss function. The order of applying ensemble classifiers
is optimized in Gao et al. [9] by myopically choosing the next classifier which
minimizes the entropy. Karayev at el. [12] propose anytime recognition via Q-
learning given a computational cost budget. In contrast, our approach optimizes
the stage order and the stopping criterion jointly.

Kokkinos [13] used Branch-and-Bound (BB) to prioritize the search over
image locations driven by an upper bound on the classification score. It is related
to our approach in that object-less locations are easily detected and the search
is guided in location space but with the di↵erence that our policy proposes the
next part to be tested in cases when no label can yet be given to a particular
location. Earlier approaches [15,17,14] relied on BB to constrain the search space
of object detectors based on a sliding window or a Hough transform but without
deformable parts. Another related group of approaches focuses on learning a
sequence of object template tests in position, scale, and orientation space that
minimizes the total computation time through a coarse-to-fine evaluation [8,18].

The classic work of Viola and Jones [22] introduced a cascade of classifiers
whose order was determined by importance weights, learned by AdaBoost. The
approach was studied extensively in [2,3,10,16,25]. Recently, Dollar et al. [4]
introduced cross-talk cascades which allow detector responses to trigger or sup-
press the evaluation of weak classifiers in the neighboring image locations. Weiss
et al. [23] used structured prediction cascades to optimize a function with two
objectives: pose refinement and filter evaluation cost. Sapp et al. [20] learn a
cascade of pictorial structures with increasing pose resolution by progressively

4 Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

filtering the pose-state space. Its emphasis is on pre-filtering structures rather
than part locations through max-margin scoring so that human poses with weak
individual part appearances can still be recovered. Rahtu et al. [19] used general
“objectness” filters in a cascade to maximize the quality of the locations that
advance to the next stage. Our approach is also related to and can be combined
with active learning via Gaussian processes for classification [11].

Similarly to the closest approaches above [6,13,21,24], our method aims to
balance the number of part filter evaluations with the classification accuracy in
part-based object detection. The novelty and the main advantage of our approach
is that in addition it optimizes the part filter ordering. Since our “cascades” still
run only on parts, we do not expect the approach to show higher accuracy than
structured prediction cascades [20] which consider more sophisticated represen-
tations that the pictorial structures in the DPM.

3 Technical approach

The state-of-the-art performance in object detection is obtained by star-structured
models such as DPM [7]. A star-structured model of an object with n parts is
formally defined by a (n + 2)-tuple (F0, P1, . . . , Pn

, b), where F0 is a root fil-
ter, b is a real-valued bias term, and P

k

are the part models. Each part model
P
k

= (F
k

, v
k

, d
k

) consists of a filter F
k

, a position v
k

of the part relative to
the root, and the coe�cients d

k

of a quadratic function specifying a deforma-
tion cost of placing the part away from v

k

. The object detector is applied in a
sliding-window fashion to each location x in an image pyramid, where x = (r, c, l)
specifies a position (r, c) in the l-th level (scale) of the pyramid. The space of
all locations (position-scale tuples) in the image pyramid is denoted by X . The
response of the detector at a given root location x = (r, c, l) 2 X is:

score(x) = F 0
0 · �(H,x) +

nX

k=1

max
x

k

✓
F 0
k

· �(H,x
k

)� d
k

· �
d

(�
k

)

◆
+ b,

where �(H,x) is the histogram of oriented gradients (HOG) feature vector at
location x and �

k

:= (r
k

, c
k

)� (2(r, c) + v
k

) is the displacement of the k-th part
from its anchor position v

k

relative to the root location x. Each term in the sum
above implicitly depends on the root location x since the part locations x

k

are
chosen relative to it. The score can be written as:

score(x) =
nX

k=0

m
k

(x) + b, (1)

where m0(x) := F 0
0 · �(H,x) and for k > 0, m

k

(x) := max
x

k

�
F 0
k

· �(H,x
k

)� d
k

·
�
d

(�
k

)
�
. From this perspective, there is no di↵erence between the root and the

parts and we can think of the model as one consiting of n+ 1 parts.

Active Deformable Part Models Inference 5

3.1 Score Likelihoods for the Parts

The object detection task requires labeling every x 2 X with a label y(x) 2
{ ,�}. The traditional approach is to compute the complete score in (1) at
every position-scale tuple x 2 X . In this paper, we argue that it is not necessary
to obtain all n+1 part responses in order to label a location x correctly. Treating
the part scores as noisy observations of the true label y(x), we choose an e↵ective
order in which to receive observations and an optimal time to stop. The stopping
criterion is based on a trade-o↵ between the cost of obtaining more observations
and the cost of labeling the location x incorrectly.

Formally, the part scores m0, . . . ,mn

at a fixed location x are random vari-
ables, which depend on the input image, i.e. the true label y(x). To emphasize
this we denote them with upper-case lettersM

k

and their realizations with lower-
case letters m

k

. In order to predict an e↵ective part order and stopping time,
we need statistics which describe the part responses. Let h�(m0,m1, . . . ,mn

)
and h (m0,m1, . . . ,mn

) denote the joint probability density functions (pdf) of
the part scores conditioned on the true label being positive y = � and negative
y = , respectively. We make the following assumption.

Assumption. The responses of the parts of a star-structured model with a given

root location x 2 X are independent conditioned on the the true label y(x), i.e.

h�(m0,m1, . . . ,mn

) =
Q

n

k=0 h
�
k

(m
k

),

h (m0,m1, . . . ,mn

) =
Q

n

k=0 h

k

(m
k

),
(2)

where h�
k

(m
k

) is the pdf of M
k

| y = � and h
k

(m
k

) is the pdf of M
k

| y = .

We learn non-parametric representations for the 2(n+1) pdfs {h�
k

, h
k

} from
an annotated set D of training images. We emphasize that the above assumption
does not always hold in practice but simplifies the representation of the score
likelihoods significantly1 and avoids overfitting. Our algorithm for choosing a
part order and a stopping time can be used without the independence assump-
tion. However, we expect the performance to be similar while an unreasonable
amount of training data would be required to learn a good representation of
the joint pdfs. To evaluate the fidelity of the decoupled representation in (2) we
computed correlation coe�cients between all pairs of part responses (Table 1)
for the classes in the PASCAL VOC 2007 dataset. The mean over all classes,
0.23, indicates a weak correlation. We observed that the few highly correlated
parts have identical appearances (e.g. car wheels) or a spatial overlap.

To learn representations for the score likelihoods, {h�
k

, h
k

}, we collected a
set of scores for each part from the the training set D. Given a positive example
I�
i

2 D of a particular DPM component, the root was placed at the scale
and position x⇤ of the top score within the ground-truth bounding box. The

1 Removing the independence assumption would require learning the 2 joint (n + 1)
dimensional pdfs of the part scores in (2) and extracting the 2(n+1) marginals and
the 2(n+1)(2n�1) conditionals of the form h(mk | mI), where I ✓ {0, . . . , n}\{k}.

6 Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

0.36 0.37 0.14 0.18 0.24 0.29 0.40 0.16 0.13 0.17 0.44 0.11 0.23 0.21 0.14 0.21 0.26 0.22 0.24 0.20 0.23

Table 1: Average correlation coe�cients among pairs of part responses for all 20 classes
in the VOC 2007 dataset

Fig. 2: Score likelihoods for several parts from a car DPM model. The root (P0) and
three parts of the model are shown on the left. The corresponding positive and negative
score likelihoods are shown on the right.

response mi

0 of the root filter was recorded. The parts were placed at their
optimal locations relative to the root location x⇤ and their scores mi

k

, k > 0
were recorded as well. This procedure was repeated for all positive examples in
D to obtain a set of scores {mi

k

| �} for each part k. For negative examples,
x⇤ was selected randomly over all locations in the image pyramid and the same
procedure was used to obtain the set {mi

k

| }. Kernel density estimation was
applied to the score collections in order to obtain smooth approximations to h�

k

and h
k

. Fig. 2 shows several examples of the score likelihoods obtained from the
part responses of a car model.

3.2 Active Part Selection

This section discusses how to select an ordered subset of the n+ 1 parts, which
when applied at a given location x 2 X has a small probability of mislabeling x.
The detection at x proceeds in rounds t = 0, . . . , n+1. The DPM inference applies
the root and parts in a predefined topological ordering of the model structure.
Here, we do not fix the order of the parts a priori. Instead, we select which part to
run next sequentially, depending on the part responses obtained in the past. The
part chosen at round t is denoted by k(t) and can be any of the parts that have
not been applied yet. We take a Bayesian approach and maintain a probability
p
t

:= P(y = � | m
k(0), . . . ,mk(t�1)) of a positive label at location x conditioned

on the part scores from the previous rounds. The state at time t consists of a
binary vector s

t

2 {0, 1}n+1 indicating which parts have already been used and

Active Deformable Part Models Inference 7

the information state p
t

2 [0, 1]. Let S
t

:= {s 2 {0, 1}n+1 | 1T s = t} be the set2

of possible values for s
t

. At the start of a detection, s0 = 0 and p0 = 1/2, since
no parts have been used and we have an uninformative prior for the true label.

Suppose that part k(t) is applied at time t and its score ism
k(t). The indicator

vector s
t

of used parts is updated as:

s
t+1 = s

t

+ e
k(t). (3)

Due to the independence of the score likelihoods (2), the posterior label distri-
bution is computed using Bayes rule:

p
t+1 =

h�
k(t)(mk(t))

h�
k(t)(mk(t)) + h

k(t)(mk(t))
p
t

. (4)

In this setting, we seek a conditional plan ⇡, which chooses which part to run
next or stops and decides on a label for x. Formally, such a plan is called a policy

and is a function ⇡(s, p) : {0, 1}n+1⇥ [0, 1] ! { ,�, 0, . . . , n}, which depends on
the previously used parts s and the label distribution p. An admissible policy
does not allow part repetitions and satisfies ⇡(1, p) 2 { ,�} for all p 2 [0, 1],
i.e. has to choose a label after all parts have been used. The set of admissible
policies is denoted by ⇧.

Let ⌧(⇡) := inf{t � 0 | ⇡(s
t

, p
t

) 2 { ,�}} n + 1 denote the stopping
time of policy ⇡ 2 ⇧. Let ŷ

⇡

2 { ,�} denote the label guessed by policy ⇡
after its termination. We would like to choose a policy, which decides quickly

and correctly. To formalize this, define the probability of making an error as
Pe(⇡) := P(ŷ

⇡

6= y), where y is the hidden correct label of x.

Problem (Active Part Selection). Given ✏ > 0, choose an admissible part policy

⇡ with minimum expected stopping time and probability of error bounded by ✏:

min
⇡2⇧

E[⌧(⇡)]

s.t. Pe(⇡) ✏,
(5)

where the expectation is over the label y and the part scores M
k(0), . . . ,Mk(⌧�1).

Note that if ✏ is chosen too small, (5) might be infeasible. In other words,
even the best sequencing of the parts might not reduce the probability of error
su�ciently. To avoid this issue, we relax the constraint in (5) by introducing a
Lagrange multiplier � > 0 as follows:

min
⇡2⇧

E[⌧(⇡)] + �Pe(⇡). (6)

2
Notation: 1 denotes a vector with all elements equal to one, 0 denotes a vector with
all elements equal to zero, and ei denotes a vector with one in the i-th component
and zero everywhere else.

8 Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

The Lagrange multiplier � can be interpreted as a cost paid for choosing an
incorrect label. To elaborate on this, we rewrite the cost function as follows:

E

⌧ + �E

y

⇥
1{ŷ 6=y} | M

k(0), . . . ,Mk(⌧�1)

⇤�

= E

⌧ + �1{ŷ 6=�}P

�
y = � | M

k(0), . . . ,Mk(⌧�1)

�

+ �1{ŷ 6= }P
�
y = | M

k(0), . . . ,Mk(⌧�1)

��

= E

⌧ + �p

⌧

1{ŷ= } + �(1� p
⌧

)1{ŷ=�}

�
.

The term �p
⌧

above is the cost paid if label ŷ = is chosen incorrectly. Similarly,
�(1�p

⌧

) is the cost paid if label ŷ = � is chosen incorrectly. To allow flexibility,
we introduce separate costs �

fp

and �
fn

for false positive and false negative
mistakes. The final form of the Active Part Selection problem is:

min
⇡2⇧

E

⌧ + �

fn

p
⌧

1{ŷ= } + �
fp

(1� p
⌧

)1{ŷ=�}

�
. (7)

Computing the Part Selection Policy Problem (7) can be solved using Dynamic
Programming [1]. For a fixed policy ⇡ 2 ⇧ and a given initial state s0 2 {0, 1}n+1

and p0 2 [0, 1], the value function:

V
⇡

(s0, p0) := E

⌧ + �

fn

p
⌧

1{ŷ= } + �
fp

(1� p
⌧

)1{ŷ=�}

�
,

is a well-defined quantity. The optimal policy ⇡⇤ and the corresponding optimal

value function are obtained as:

V ⇤(s0, p0) = min
⇡2⇧

V
⇡

(s0, p0),

⇡⇤(s0, p0) = argmax
⇡2⇧

V
⇡

(s0, p0).

To compute ⇡⇤ we proceed backwards in time. Suppose that the policy has not
terminated by time t = n + 1. Since there are no parts left to apply the policy
is forced to terminate. Thus, ⌧ = n + 1 and s

n+1 = 1 and for all p 2 [0, 1] the
optimal value function becomes:

V ⇤(1, p) = min
ŷ2{ ,�}

⇢
�
fn

p1{ŷ= } + �
fp

(1� p)1{ŷ=�}

�

= min{�
fn

p,�
fp

(1� p)}. (8)

The intermediate stage values for t = n, . . . , 0, s
t

2 S
t

, and p
t

2 [0, 1] are:

V ⇤(s
t

, p
t

) =min

⇢
�
fn

p
t

,�
fp

(1� p
t

), (9)

1 + min
k2A(s

t

)
E
M

k

V ⇤
✓
s
t

+ e
k

,
h�
k

(M
k

)p
t

h�
k

(M
k

) + h
k

(M
k

)

◆�
,

Active Deformable Part Models Inference 9

where A(s) := {i 2 {0, . . . , n} | s
i

= 0} is the set of available (unused) parts3.
The optimal policy is readily obtained from the optimal value function. At stage
t, if the first term in (9) is smallest, the policy stops and chooses ŷ = ; if the
second term is smallest, the policy stops and chooses ŷ = �; otherwise, the policy
chooses to run the part k, which minimizes the expectation.

Alg. 1 summarizes the steps necessary to compute the optimal policy ⇡⇤

using the score likelihoods {h�
k

, h
k

} from Sec. 3.1. The one dimensional space
[0, 1] of label probabilities p can be discretized into d bins in order to store the
function ⇡ returned by Alg. 1. The memory required is O(d2n+1) since the space
{0, 1}n+1 of used-part indicator vectors grows exponentially with the number of
parts. Nevertheless, in practice the number of parts in a DPM is rarely more
than 20 and Alg. 1 can be executed.

Algorithm 1 Active Part Selection

1: Input: Score likelihoods {h
k

, h

�
k

}n

k=0 for all parts, false positive cost �

fp

, false negative cost
�

fn

2: Output: Policy ⇡ : {0, 1}n+1 ⇥ [0, 1] ! { ,�, 0, . . . , n}
3:
4: S

t

:= {s 2 {0, 1}n+1 | 1T

s = t}
5: A(s) := {i 2 {0, . . . , n} | s

i

= 0} for s 2 {0, 1}n+1

6:
7: V (1, p) := min{�

fn

p,�

fp

(1 � p)}, 8p 2 [0, 1]

8: ⇡(1, p) :=

(
 , �

fn

p �

fp

(1 � p)

�, otherwise

9:
10: for t = n, n � 1, . . . , 0 do
11: for s 2 S

t

do
12: for k 2 A(s) do

13: Q(s, p, k) := E
M

k

V

✓
s + e

k

,

h

�
k

(M
k

)p

h

�
k

(M
k

)+h

k

(M
k

)

◆

14: end for

15: V (s, p) :=min

⇢
�

fn

p,�

fp

(1 � p), 1 + min
k2A(s)

Q(s, p, k)

�

16: ⇡(s, p) :=

8
>><

>>:

 , V (s, p) = �

fn

p,

�, V (s, p) = �

fp

(1 � p),

argmin
k2A(s)

Q(s, p, k), otherwise

17: end for
18: end for
19: return ⇡

3.3 Active DPM Inference

A policy ⇡ is obtained o✏ine using Alg. 1. During inference, ⇡ is used to select
a sequence of parts to apply at each location x 2 X in the image pyramid. Note
that the labeling of each location is treated as an independent problem. Alg. 2
summarizes the ADPM inference process.
3 Each score likelihood was discretized using 201 bins to obtain a histogram. Then, the
expectation in (9) was computed as a sum over the bins. Alternatively, Monte Carlo
integration can be performed by sampling from the Gaussian mixtures directly.

10 Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

Algorithm 2 Active DPM Inference

1: Input: Image pyramid, model (F0, P1, . . . , Pn

, b), score likelihoods {h
k

, h

�
k

}n

k=0 for all parts,
policy ⇡

2: Output: score(x) at all locations x 2 X in the image pyramid
3:
4: for x 2 1 . . . |X | do . All image pyramid locations
5: s0 := 0; p0 = 0.5; score(x) := 0
6: for t = 0, 1, . . . , n do
7: k := ⇡(s

t

, p

t

) . Lookup next best part
8: if k = � then . Labeled as foreground
9: for i 2 {0, 1, . . . , n} do
10: if s

t

(i) = 0 then
11: Compute score m

i

(x) for part i . O(|�|)
12: score(x) := score(x) + m

i

(x)
13: end if
14: end for
15: score(x) := score(x) + b . Add bias to final score
16: break;
17: else if k = then . Labeled as background
18: score(x) := �1
19: break;
20: else . Update probability and score
21: Compute score m

k

(x) for part k . O(|�|)
22: score(x) := score(x) + m

k

(x)

23: p

t+1 :=
h

�
k

(m
k

(x))p
t

h

�
k

(m
k

(x))+h

k

(m
k

(x))

24: s

t+1 = s

t

+ e

k

25: end if
26: end for
27: end for

At the start of a detection at location x, s0 = 0 since no parts have been used
and p0 = 1/2 assuming an uninformative label prior (LN. 5). At each round t,
the policy is queried to obtain either the next part to run or a predicted label for
x (LN. 7). Note that querying the policy is an O(1) operation since it is stored as
a lookup table. If the policy terminates and labels y(x) as foreground (LN. 8), all
unused part filters are applied in order to obtain the final discriminative score in
(1). On the other hand, if the policy terminates and labels y(x) as background,
no additional part filters are evaluated and the final score is set to �1 (LN. 18).
In this case, our algorithm makes computational savings compared to the DPM.
The potential speed-up and the e↵ect on accuracy are discussed in the Sec. 4.
Finally, if the policy returns a part index k, the corresponding score m

k

(x) is
computed by applying the part filter (LN. 21). This operation is O(|�|), where
� is the space of possible displacements for part k with respect to the root
location x. Following the analysis in [6], searching over the possible locations
for part k is usually no more expensive than evaluating its linear filter F

k

once.
This is the case because once F

k

is applied at some location x
k

, the resulting
response �

k

(x
k

) = F 0
k

· �(H,x
k

) is cached to avoid recomputing it later. The
score m

k

of part k is used to update the total score at x (LN. 22). Then, (3) and
(4) are used to update the state (s

t

, p
t

) (LN. 23 - 24). Since the policy lookups
and the state updates are all of O(1) complexity, the worst-case complexity of
Alg. 2 is O(n|X ||�|). The average running time of our algorithm depends on the

Active Deformable Part Models Inference 11

total number of score m
k

evaluations, which in turn depends on the choice of
the parameters �

fn

and �
fp

and is the subject of the next section.

4 Experiments

4.1 Speed-Accuracy Trade-O↵

The accuracy and the speed of the ADPM inference depend on the penalty, �
fp

,
for incorrectly predicting background as foreground and the penalty, �

fn

, for
incorrectly predicting foreground as background. To get an intuition, consider
making both �

fp

and �
fn

very small. The cost of an incorrect prediction will be
negligible, thus encouraging the policy to sacrifice accuracy and stop immedi-
ately. In the other extreme, when both parameters are very large, the policy will
delay the prediction as much as possible in order to obtain more information.

To evaluate the e↵ect of the parameter choice, we compared the average
precision (AP) and the number of part evaluations of Alg. 2 to those of the
traditional DPM as a baseline. Let R

M

be the total number of score m
k

(x)
evaluations for k > 0 (excluding the root) over all locations x 2 X performed
by method M. For example, R

DPM

= n|X | since the DPM evaluates all parts
at all locations in X . We define the relative number of part evaluations
(RNPE) of ADPM versus method M as the ratio of R

M

to R
ADPM

. The AP
and the RNPE versus DPM of ADPM were evaluated on several classes from the
PASCAL VOC 2007 training set (see Fig. 3) for di↵erent values of the parameter
� = �

fn

= �
fp

. As expected, the AP increases while the RNPE decreases, as
the penalty of an incorrect declaration � grows, because ADPM evaluates more
parts. The dip in RNPE for very low � is due to fact that ADPM starts reporting
many false-positives. In the case of a positive declaration all n+1 part responses
need to be computed which reduces the speed-up versus DPM.

To limit the number of false positive mistakes made by the policy we set
�
fp

> �
fn

. While this might hurt the accuracy, it will certainly result in less
positive declarations and in turn significantly less part evaluations. To verify this
intuition we performed experiments with �

fp

> �
fn

on the VOC 2007 training
set. Table 2 reports the AP and the RNPE versus DPM from a grid search over
the parameter space. Generally, as the ratio between �

fp

and �
fn

increases, the
RNPE increases while the AP decreases. Notice, however, that the increase in
RNPE is significant, while the hit in accuracy is negligible.

In sum, �
fp

and �
fn

were selected with a grid search in parameter space with
�
fp

> �
fn

using the training set. Choosing di↵erent values for di↵erent classes
should improve the performance even more.

4.2 Results

In this section we compare ADPM4 versus two baselines, the DPM and the
cascade DPM (Cascade) in terms of average precision (AP), relative number of

4 ADPM source code is available at: http://cis.upenn.edu/
~

menglong/adpm.html

http://cis.upenn.edu/~menglong/adpm.html

12 Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

10
0

10
1

10
2

10
3

10
4

69

69.5

70

70.5

71

71.5

72

72.5

73

λ
fp

 = λ
fn

A
ve

ra
g

e
 p

re
ci

si
o

n
10

0
10

1
10

2
10

3
10

4
0

10

20

30

40

50

60

70

λ
fp

 = λ
fn

S
p
e
e
d
u
p
 f
a
ct

o
r

Fig. 3: Average precision and relative number of part evaluations versus DPM as a
function of the parameter � = �fn = �fp on a log scale. The curves are reported on
the bus class from the VOC 2007 training set.

Average Precision RNPE vs DPM
�fp/�fn 4 8 16 32 64 �fp/�fn 4 8 16 32 64

4 70.3 4 40.4
8 70.0 71.0 8 80.7 61.5
16 69.6 71.1 71.5 16 118.6 74.5 55.9
32 70.5 70.7 71.6 71.6 32 178.3 82.1 59.8 37.0
64 67.3 69.6 71.5 71.6 71.4 64 186.9 96.4 56.2 34.5 20.8

Table 2: Average precision and relative number of part evaluations versus DPM ob-
tained on the bus class from VOC 2007 training set. A grid search over (�fp,�fn) 2
{4, 8, . . . , 64}⇥ {4, 8, . . . , 64} with �fp � �fn is shown.

VOC2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DPM RNPE 102.8 106.7 63.7 79.7 58.1 155.2 44.5 40.0 58.9 71.8 69.9 49.2 51.0 59.6 45.3 49.0 62.6 68.6 79.0 100.6 70.8

DPM AP 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

ADPM AP 33.5 59.8 9.8 15.3 27.6 52.5 57.6 22.1 20.1 24.6 24.9 12.3 57.6 48.4 42.8 12.0 20.4 35.7 46.3 43.2 33.3

VOC2010 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DPM RNPE 110.0 100.8 47.9 98.8 111.8 214.4 75.6 202.5 150.8 147.2 62.4 126.2 133.7 187.1 114.4 59.3 24.3 131.2 143.8 106.0 117.4

DPM AP 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6

ADPM AP 45.3 49.1 10.2 12.2 26.9 50.6 41.9 22.7 16.5 22.8 10.6 19.7 40.8 44.5 36.8 8.3 29.1 18.6 39.7 34.5 29.1

Table 3: Average precision (AP) and relative number of part evaluations (RNPE) of
DPM versus ADPM on all 20 classes in VOC 2007 and 2010.

VOC2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

Cascade RNPE 5.93 5.35 9.17 6.09 8.14 3.06 5.61 4.51 6.30 4.03 4.83 7.77 3.61 6.67 17.8 9.84 3.82 2.43 2.89 6.97 6.24

ADPM Speedup 3.14 1.60 8.21 4.57 3.36 1.67 2.11 1.54 3.12 1.63 1.28 2.72 1.07 1.50 3.59 6.15 2.92 1.10 1.11 3.26 2.78

Cascade AP 33.2 60.8 10.2 16.1 27.3 54.1 58.1 23.0 20.0 24.2 26.8 12.7 58.1 48.2 43.2 12.0 20.1 35.8 46.0 43.4 33.7

ADPM AP 31.7 59.0 9.70 14.9 27.5 51.4 56.7 22.1 20.4 24.0 24.7 12.4 57.7 48.5 41.7 11.6 20.4 35.9 45.8 42.8 33.0

VOC2010 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

Cascade RNPE 7.28 2.66 14.80 7.83 12.22 5.47 6.29 6.33 9.72 4.16 3.74 10.77 3.21 9.68 21.43 12.21 3.23 4.58 3.98 8.17 7.89

ADPM Speedup 2.15 1.28 7.58 5.93 4.68 2.79 2.28 2.44 3.72 2.42 1.52 2.76 1.57 2.93 4.72 8.24 1.42 1.81 1.47 3.41 3.26

Cascade AP 45.5 48.9 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.1 10.7 20.5 42.4 44.5 41.3 8.7 29.0 18.7 40.1 34.4 29.6

ADPM AP 44.5 49.2 9.5 11.6 25.9 50.6 41.7 22.5 16.9 22.0 9.8 19.8 41.1 45.1 40.2 7.4 28.5 18.3 38.0 34.5 28.8

Table 4: Average precision (AP), relative number of part evaluations (RNPE), and
relative wall-clock time speedup (Speedup) of ADPM versus Cascade on all 20 classes
in VOC 2007 and 2010.

Active Deformable Part Models Inference 13

PCA no cache PCA cache PE Full no cache Full cache PE Total no cache Total cache Total PE

CASCADE 4.34s 0.67s 208K 0.13s 0.08s 1.1K 4.50s 0.79s 209K

ADPM 0.62s 0.06s 36K 0.06s 0.04s 0.6K 0.79s 0.19s 37K

Table 5: An example demonstrating the computational time breakdown during infer-
ence of ADPM and Cascade on a single image. The number of part evaluations (PE)
and the inference time (in sec) is recorded for the PCA and the full-dimensional stages.
The results are reported once without and once with cache use. The number of part
evaluations is independent of caching.

Fig. 4: Illustration of the ADPM inference process on a car example. The DPM model
with colored root and parts is shown on the left. The top row on the right consists of the
input image and the evolution of the positive label probability (pt) for t 2 {1, 2, 3, 4}
(high values are red; low values are blue). The bottom row consists of the full DPM
score(x) and a visualization of the parts applied at di↵erent locations at time t. The
pixel colors correspond to the part colors on the left. In this example, despite the car
being heavily occluded, ADPM converges to the correct location after four iterations.

(a) class: bicycle (b) class: car (c) class: person (d) class: horse
Fig. 5: Precision recall curves for bicycle, car, person, and horse classes from VOC 2007.
Our method’s accuracy ties with the baselines.

part evaluations (RNPE), and relative wall-clock time speedup (Speedup). Ex-
periments were carried out on all 20 classes in the PASCAL VOC 2007 and 2010
datasets. Publicly available PASCAL VOC 2007 and 2010 DPM and Cascade
models were used for all three methods. For a fair comparison, ADPM changes
only the part order and the stopping criterion of the original implementations.

ADPM vs DPM: The inference of ADPM on two input images is shown
in detail in Fig. 1 and Fig. 4. The probability of a positive label p

t

(top row)
becomes more contrasted as additional parts are evaluated. The locations at
which the algorithm has not terminated decrease rapidly as time progresses.
Visually, the locations with a maximal posterior are identical to the top scores
obtained by the DPM. The order of parts chosen by the policy is indicative of
their informativeness. For example, in Fig. 4 the wheel filters are applied first
which agrees with intuition. In this example, the probability p

t

remains low at

14 Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

the correct location for several iterations due to the occlusions. Nevertheless, the
policy recognizes that it should not terminate and as it evaluates more parts,
the correct location of the highest DPM score is reflected in the posterior.

ADPM was compared to DPM in terms of AP and RNPE to demonstrate
the ability of ADPM to reduce the number of part evaluations with minimal
loss in accuracy irrespective of the features used. The parameters were set to
�
fp

= 20 and �
fn

= 5 for all classes based on the analysis in Sec. 4.1. Table 3
shows that ADPM achieves a significant decrease (90 times on average) in the
number of evaluated parts with negligible loss in accuracy. The precision-recall
curves of the two methods are shown in Fig. 5 for several classes.

ADPM vs Cascade: The improvement in detection speed achieved by
ADPM is demonstrated via a comparison to Cascade in terms of AP, RNPE, and
wall-clock time (in sec). During inference, Cascade prunes the image locations
in two passes. In the first pass, the locations are filtered using the PCA filters
and the low-scoring ones are discarded. In the second pass, the remaining loca-
tions are filtered using the full-dimensional filters. To make a fair comparison, we
adopted a similar two-stage approach. An additional policy was learned using
PCA score likelihoods and was used to schedule PCA filters during the first pass.
The locations, which were selected as foreground in the first stage, were filtered
again, using the original policy to schedule the full-dimensional filters. The pa-
rameters �

fp

and �
fn

were set to 20 and 5 for the PCA policy and to 50 and 5
for the full-dimensional policy. A higher �

fp

was chosen to make the prediction
more precise (albeit slower) during the second stage. Deformation pruning was
not used for either method. Table 4 summarizes the results. A discrepancy in the
speedup of ADPM versus Cascade is observed in Table 4. On average, ADPM
is 7 times faster than Cascade in RNPE but only 3 times faster in seconds.
A breakdown of the computational time during inference on a single image is
shown in Table 5. We observe that the ratios of part evaluations and of seconds
are consistent within individual stages (PCA and full). However, a single filter
evaluation during the full-filter stage is significantly slower than one during the
PCA stage. This does not a↵ect the cumulative RNPE but lowers the combined
seconds ratio. While ADPM is significantly faster than Cascade during the PCA
stage, the speedup (in sec) is reduced during the slower full-dimensional stage.

5 Conclusion

This paper presents an active part selection approach which substantially speeds
up inference with pictorial structures without sacrificing accuracy. Statistics
learned from training data are used to pose an optimization problem, which
balances the number of part filter convolution with the classification accuracy.
Unlike existing approaches, which use a pre-specified part order and hard stop-
ping thresholds, the resulting part scheduling policy selects the part order and
the stopping criterion adaptively based on the filter responses obtained during
inference. Potential future extensions include optimizing the part selection across
scales and image positions and detecting multiple classes simultaneously.

Active Deformable Part Models Inference 15

References

1. Bertsekas, D.P.: Dynamic Programming and Optimal Control. No. 1, Athena Sci-
entific (1995)

2. Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Con-
ference on. vol. 2, pp. 236–243. IEEE (2005)

3. Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D., Rehg, J.M.: On the design of cas-
cades of boosted ensembles for face detection. IJCV 77(1-3), 65–86 (2008)

4. Dollár, P., Appel, R., Kienzle, W.: Crosstalk cascades for frame-rate pedestrian
detection. In: ECCV. Springer (2012)

5. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The Pascal
Visual Object Classes (VOC) Challenge. IJCV 88(2), 303–338 (2010)

6. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.: Cascade object detection with
deformable part models. In: CVPR. pp. 2241–2248. IEEE (2010)

7. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)

8. Fleuret, F., Geman, D.: Coarse-to-fine face detection. IJCV (2001)
9. Gao, T., Koller, D.: Active classification based on value of classifier. In: NIPS

(2011)
10. Gualdi, G., Prati, A., Cucchiara, R.: Multistage particle windows for fast and

accurate object detection. PAMI 34(8), 1589–1604 (2012)
11. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Gaussian processes for object

categorization. IJCV (2010)
12. Karayev, S., Fritz, M., Darrell, T.: Anytime recognition of objects and scenes. In:

CVPR (2014)
13. Kokkinos, I.: Rapid deformable object detection using dual-tree branch-and-bound.

In: NIPS (2011)
14. Lampert, C.H.: An e�cient divide-and-conquer cascade for nonlinear object detec-

tion. In: CVPR. IEEE (2010)
15. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: Object

localization by e�cient subwindow search. In: CVPR. pp. 1–8. IEEE (2008)
16. Lehmann, A., Gehler, P.V., Van Gool, L.J.: Branch&rank: Non-linear object de-

tection. In: BMVC (2011)
17. Lehmann, A., Leibe, B., Van Gool, L.: Fast prism: Branch and bound hough trans-

form for object class detection. IJCV 94(2), 175–197 (2011)
18. Pedersoli, M., Vedaldi, A., Gonzalez, J.: A coarse-to-fine approach for fast de-

formable object detection. In: CVPR. pp. 1353–1360. IEEE (2011)
19. Rahtu, E., Kannala, J., Blaschko, M.: Learning a category independent object

detection cascade. In: ICCV (2011)
20. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation.

In: ECCV. Springer (2010)
21. Sznitman, R., Becker, C., Fleuret, F., Fua, P.: Fast object detection with entropy-

driven evaluation. In: CVPR (June 2013)
22. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple

features. In: CVPR. IEEE (2001)
23. Weiss, D., Sapp, B., Taskar, B.: Structured prediction cascades. arXiv preprint

arXiv:1208.3279 (2012)
24. Wu, T., Zhu, S.C.: Learning near-optimal cost-sensitive decision policy for object

detection. In: ICCV. pp. 753–760. IEEE (2013)

16 Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis

25. Zhang, Z., Warrell, J., Torr, P.H.: Proposal generation for object detection using
cascaded ranking svms. In: CVPR. pp. 1497–1504. IEEE (2011)

