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Abstract

We introduce a new approach for estimating a fine
grained 3D shape and continuous pose of an object from
a single image. Given a training set of view exemplars,
we learn and select appearance-based discriminative parts
which are mapped onto the 3D model through a facility lo-
cation optimization. The training set of 3D models is sum-
marized into a set of basis shapes from which we can gener-
alize by linear combination. Given a test image, we detect
hypotheses for each part. The main challenge is to select
from these hypotheses and compute the 3D pose and shape
coefficients at the same time. To achieve this, we optimize
a function that considers simultaneously the appearance
matching of the parts as well as the geometric reprojection
error. We apply the alternating direction method of multipli-
ers (ADMM) to minimize the resulting convex function. Our
main and novel contribution is the simultaneous solution
for part localization and detailed 3D geometry estimation
by maximizing both appearance and geometric compatibil-
ity with convex relaxation.

1. Introduction

Recovering 3D geometry from 2D imaginary of an ob-
ject is one of the most fundamental and challenging prob-
lems in computer vision. Geometric features were the main
representation of objects in the 20th century and have long
been used to establish correspondence between vertices and
edges of a 3D model and their image projections [14]. Al-
though such representation was successful with geometric
invariance it could not cope with the complexity of appear-
ance of 3D object categories in the real world which could
only be learned from exemplars.

As soon as massive 2D image exemplars became avail-
able on the Internet and through tedious annotation, the
computer vision community has harnessed fruitful results
as the state of the art in detecting object categories has
improved dramatically [8, 11]. More recently, researchers
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have focused on combining such approaches with 3D ge-
ometry to build more powerful object detectors that are also
able to provide weak 3D information such as viewpoint
[29, 30, 40, 25, 19]. In this paper, we go beyond view-
point estimation to establishing the actual 3D shape of an
object for the sake of fine grained classification or 3D inter-
action such as grasping and manipulation. Very few efforts
have been devoted to such combined estimation of pose and
shape from a single image [18, 27].

Recent advances in recognition have opened doors to
better understanding of 3D in the wild, but there are three
main challenges in the marriage of 2D appearance and 3D
geometry: (1) how to learn a representation that captures
appearance variation of geometric features across instances
and poses, (2) how to establish the 3D shape of an object
without exhaustively comparing to all possible instances or
when that instance has not been seen before, and (3) how
to optimize for appearance and correspondence compatibil-
ity as well as 3D shape and pose at the same time, without
splitting the problem into subproblems.

In this paper, we propose a novel approach that marries
the power of discriminative parts with an explicit 3D geo-
metric representation with the goal to infer 3D shape and
continuous pose of an object (or pop-up) from a single im-
age. Part descriptors are discriminatively learned in train-
ing images. Such parts are centered around projections of
3D landmarks which are given in abundance on the train-
ing 3D models. To establish a compact representation we
minimize the number of needed landmarks by solving a
facility-location problem. To deal with geometric defor-
mation, we summarize the training set of 3D models into
a shape dictionary from which we can generalize by linear
combination. Given a test image we detect top location hy-
potheses of each part. The challenge is how to fit best these
parts by maximizing the geometric consistency. This entails
the selection among the hypotheses of each part and the
shape/pose computation. Unlike other approaches which
rely on local optimization and initialize pose by DPM-based
discretized pose estimation [40, 27], we compute the selec-
tion as well as the shape and pose parameters in one step
using a convex program solved with the alternating direc-
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Figure 1: Illustrative summary of our approach: 3D Landmarks on a 3D model are associated with discriminatively learned
part descriptors (left). Intra-class shape variation is captured with linear combinations of a sparse shape basis (2nd left).
Learned part descriptors produce multiple maximum responses for each part in a testing image (3rd from left). The selection
of the part hypotheses, 3D pose and 3D shape are simultaneously estimated and the result is illustrated through a popup
(right).

tion method of multipliers (ADMM).
Figure 1 illustrates the outline of our approach. In sum-

mary, the major technical contributions are:

• A convex optimization framework for joint landmark
localization, fine grained 3D shape and continuous
pose estimation from a single image.

• Our convex objective does not require viewpoint or de-
tection initialization.

• An automatic landmark selection method considering
both discriminative power in appearance and spatial
coverage in geometry.

2. Related Work
The most related work includes the family of methods

that estimate an object shape by aligning a deformable
shape model to image features. This idea originated from
the active shape model (ASM) [4], which was originally
proposed for segmentation and tracking based on low-level
image features. Cristinacce and Cootes [5] proposed the
constrained local models (CLM), which combined ASM
with local appearance models for 2D feature localization
in face images. Gu and Kanade [16] presented a method
to align 3D deformable models to 2D images for 3D face
alignment. The similar methods were also proposed for 3D
car modeling [18, 40, 19, 27] and human pose estimation
[31, 38]. Our method differs in that we use a data-driven ap-
proach for discriminative landmark selection and we solve
landmark localization and shape reconstruction in a single
convex framework, which enables a global solution.

The representation of our model is inspired by recent ad-
vances in part-based modeling [8, 33, 17, 22], which models
the appearance of object classes with a collection of mid-

sized discriminative parts. Our optimization approach is re-
lated to the previous work on using convex relaxation tech-
niques for object matching [28, 21, 24]. These methods fo-
cused on finding the point-to-point correspondence between
an object template and an image in 2D, while our method
considers 3D to 2D matching as well as shape variability.

Our paper is also related to recent work on 3D pose es-
timation which encodes the geometric relations among lo-
cal parts and achieved continuous pose estimation. Several
work leveraged 3D models to warp features or parts into
their canonical view [32, 37, 36]. Other work rendered local
appearances and depth from 3D models and subsequently
encoded in a 3D voting scheme [34, 13, 25]. DPM was
further lifted to 3D deformable models [9, 29] to predict
continuous viewpoint. Instance models were also used to
recover 3D pose of an object [26, 1]. But this line of work
focused on pose estimation and either used generic class
models or instance-based models. Our approach differs in
that we not only provide a detailed shape representation but
also consider intra-class variability.

3. Shape Constrained Discriminative Parts

Our proposed method models both 2D appearance vari-
ation and 3D shape deformation of an object class. The 2D
appearance is modeled as a collection of discriminatively
trained parts. Each part is associated with a 3D landmark
point on a deformable 3D shape.

Unlike the previous works that manually define land-
marks on the shape model, we propose an automatic se-
lection scheme: we first learn the appearance models for
all points on the 3D model, evaluate their detection perfor-
mance, and select a subset of them as our part models based
on their detection performance in 2D and the spatial cover-
age in 3D.



3.1. Learning Discriminative Parts

One of the main challenges in object pose estimation
rises from the fact that due to perspective transform and
self occlusions, even the same 3D position of an object has
very different 2D appearances in the image observed from
different viewpoints. We tackle this problem by learning a
mixture of discriminative part models for each point in the
3D model to capture the variety in appearance. Each part
detector consists of a simple but fast HOG detector [6] and
a more sophiscated but slow deep classifiers trained with
deep Convolutional Neural Net (CNN) [23]. The HOG de-
tectors provide location proposals to deep classifiers. Such
design is chosen to balance speed versus accuracy.

Given a training set D, each training image Ii ∈ D is
associated with the 3D points of the object shape S ∈ R3×p,
their 2D projections Li ∈ R2×p annotated in the image.

HOG Part Detectors We bootstrap the learning of a
discriminative mixture model for each part via clustering
whitened HOG (WHO) features [17, 33]. Denote φ(Lij) as
the HOG feature of the positive image patch centered at Lij

and φbg as the mean of background HOG features. We com-
pute the WHO feature as Σ−1/2(φ(Lij) − φbg), where Σ
is the shared covariance matrix computed from all positive
and negative features. Then we cluster the WHO features
of each part j into m clusters using K-means.

A linear classifier Wcj is trained for each cluster c of
a part j. We apply linear discriminant analysis due to ef-
ficiency in training and limited loss in detection accuracy
[17, 12],

Wcj = Σ−1
(
φ(Lij ; zij = c)− φbg

)
, (1)

where zij ∈ {1, . . . ,m} is the cluster assignment for each
feature, and φ(Lij ; zij = c) is the mean feature over all
Lij of cluster c. Let x = (x, y) be the position (x, y) in
the image. The response of part j at a given location x is
the max response over all its c components: scorej(x) =
maxc{Wcj · φ(x)}.

We introduce a latent variable for each training patch,
rij ∈ R2 to represent the relative center location to the
annotated landmark location Lij . We improve the classi-
fiers learned from (1) by repositioning the patch center in
the neighborhood ∆(Lij) of Lij and retrain the classifiers.
Note that the latent update procedure is similar to that of
DPM [8] with the difference that we do not apply general-
ized distance transform to filter responses but only consider
maximum responses within a local region. The reason is
that our model, as will be discussed in Section 3.3, is con-
strained by the 3D shape space instead of learned 2D defor-
mations. We want, thus, to obtain accurate part localization
to estimate the object pose and shape. A 2 × 2 covariance

Method HOG-SVM CNN
mAP 0.41 0.53

Table 1: Comparison of CNN and HOG-SVM in part local-
ization. Mean average precision (mAP) of localizing the 12
parts of PASCAL3D car category are shown.

matrixDj is estimated for each landmark j from latent vari-
ables rij , to model the uncertainty of the detected landmark
position x∗

ij relative to the ground truth.

Deep Part Classifiers HOG part detections serve as part
proposals and are subsequently re-ranked by forwarding
through a CNN and applying SVM on the extracted Pool5
layer features. During training, Pool5 features were ex-
tracted for both positive and negative patches and an SVM
is trained for each part mixture. During our experiments, we
observed that 1) fine-tuning from pre-trained AlexNet [23]
with part patches of the same object category improves part
detection accuracy, 2) Pool5 has better performance than
fully connected layers (fc6, fc7) for mid-level patches, 3)
training separate classifiers for each part mixture compo-
nent outperform a combined classifier. We used publicly
available deep learning toolbox Caffe [20] in our experi-
ments.

The performance of deep part classifiers is evaluated by
comparing against SVM trained HOG filters (HOG-SVM)
with hard negative mining. Localization accuracy is mea-
sured by the average precision of detecting the part within
the close vicinity of the groundtruth location. Table 1 shows
performance comparison of CNN and HOG-SVM on the 12
parts of PASCAL3D dataset car category.

3.2. Selecting Discriminative Landmarks

Seeking a compact representation of the object, we try to
select only a small subset of discriminative landmarks SD

among all 3D landmarks S. We want the selected landmarks
SD to be both associated with discriminative part models
and have a good spatial coverage of the object shape model
in 3D. The selection problem is formulated as a facility lo-
cation problem,

min
yu,xuv

∑
u

zuyu + λ
∑
uv

duvxuv, (2)

s.t.
∑
v

xuv = 1,

xuv ≤ yv, ∀u, v,
xuv, yu ∈ {0, 1}, ∀u, v,

where the interpretations of each symbol are presented in
Table 2.

The cost zu for a landmark u should be lower if the
associated part model is more discriminative. We model



Symbol Interpretation
zu cost of selecting landmark u
yu binary landmark selection variable
duv cost of landmark v “serving” u
xuv binary variable for landmark v “serving” u
λ trade off between unary costs and binary costs

Table 2: Notations interpretation in (2)

Figure 2: Visualization of the landmark selection optimiza-
tion result. All 256 landmark points of a car are shown in
circle markers. The color of the markers represents the Av-
erage Precision(AP) of the landmark part detection on the
training set, red means higher AP and blue means lower AP.
The size of the landmark represents the selection result, the
larger ones are selected via the MIP optimization and the
smaller ones are not selected. The red landmarks are pre-
ferred since they have higher detection accuracy, but only a
subset of red landmarks are selected because they are close
in 3D.

the discriminativeness by evaluating the Average Precision
(AP) of detecting each landmark in the training set. For
any landmark u, we perform detection with the learned part
model in the training set S to generate a list of location hy-
potheses Hu. A hypothesis h ∈ Hu is considered as true
positive if the ground truth location Liu is within a small
radius δ. Let the computed AP for a part u be APu, we
set zu = 1 − APu. The costs of “serving” (or suppress-
ing) other landmarks are set to be the euclidean distance
between landmarks in 3D, i.e., duv = ||Su − Sv||2. The
value of λ is set to 1 in our experiments. The minimization
problem 2 is a Mixed Integer Programming (MIP) problem,
which is known to be NP-hard. But a good approximation
solution can be obtained by relaxing the integer constrains
to be xuv ∈ [0, 1], yu ∈ [0, 1], solving the relaxed Linear
Programming problem, and thresholding the solution. Fig-
ure 2 visualizes an example result of MIP optimization for
landmark selection.

3.3. 3D Shape Model

We start our description by explaining how we would
estimate the shape of an object if 2D part - 3D landmark
correspondences were known. We represent a 3D object

model as a linear combination of a few basis shapes to
constrain the shape variability. This assumption has been
widely used in various shape-related problems such as ob-
ject segmentation [4], nonrigid structure from motion [3]
and single image-based shape recovery [16, 40]. We use
a weak-perspective model, which is a good approximation
when the depth of the object is smaller than the distance
from the camera. With these two assumptions, the 2D shape
P ∈ R2×p can be described by

P = R

k∑
i=1

ciBi + t1T , (3)

where Bi ∈ R3×p denotes the i-th basis shape, R ∈ R2×3

represents the first two rows of camera rotation, and t ∈ R2

is the translation vector. In model inference, the reprojec-
tion error is minimized to find the optimal parameters.

However, the model in (3) is bilinear in R and cis yield-
ing a nonconvex problem. In order to have a linear represen-
tation, we use the method proposed in [39], which assumes
that the unknown shape is a linear combination of scalable
and rotatable basis shapes:

P =

k∑
i=1

TiBi + t1T , (4)

where Ti ∈ R2×3 denotes the first two rows of a similarity
transformation matrix. In order to enforce Ti to be orthog-
onal, the spectral norms of Tis are minimized during model
inference. The spectral norm is the largest singular value of
a matrix, and minimizing it enforces the two singular val-
ues of Ti to be equal, which yields an orthogonal matrix
[39]. After Tis are estimated, the third rows of Tis can be
recovered from the orthogonality and then the estimated 2D
shape can be lifted to 3D.

4. Model Inference
Finally, we obtain global geometry-constrained local-

part models, in which the unknowns are the 2D part loca-
tions as well as the 3D pose and shape. In model inference,
we maximize the detector responses over the part locations
while minimizing the geometric reprojection error.

4.1. Objective Function

We try to locate a part by finding its correspondence in
a set of hypotheses given by the trained detector. The cost
without geometric constraints is

fscore(x1, · · · ,xp) = −
p∑

j=1

rTj xj , (5)

where xj ∈ {0, 1}l is the selection vector and rj ∈ Rl is
the vector of the detection scores for all hypotheses for the
j-th part.



Geometric consistency is imposed by minimizing the
following reprojection error:

fgeom(x1, · · · ,xp, T1, · · · , Tk, t) =

1

2

p∑
j=1

∥∥∥∥∥∥D− 1
2

j

LT
j xj −

[
k∑

i=1

TiBi

]
j

− t

∥∥∥∥∥∥
2

, (6)

where we concatenate the 2D locations of hypotheses for
part j in Lj ∈ Rl×2 and denote the covariance estimated in
training as Dj .

As introduced in Section 3.3, we add the following reg-
ularizer to enforce the orthogonality of Ti:

freg(T1, · · · , Tk) =

k∑
i=1

‖Ti‖2, (7)

where we use ‖Ti‖2 to represent the spectral norm of Ti,
i.e., the largest singular value.

To simplify the computation, we relax the binary con-
straint on xi and allow it to be a soft-assignment vector
xi ∈ A, where A = {x ∈ [0, 1]l|

∑l
i=1 xi = 1.}.

Finally, the objective function reads

min
X,T ,t

fgeom(X,T , t) + λ1fscore(X) + λ2freg(T ), (8)

s.t. xj ∈ A, ∀j = 1 : p,

where X and T represent the unions of x1, · · · ,xp and
T1, · · · , Tk, respectively. After solving (8), we recover the
3D shape S and pose θ = (R, t) from Tis, as introduced in
Section 3.3.

4.2. Optimization

The problem in (8) is convex since fscore is a linear term,
fgeom is the sum of squares of linear terms, and freg is the
sum of norms of unknown variables. We use the alternat-
ing direction method of multipliers (ADMM) [2] to solve
the convex problem in (8). Since freg is nondifferentiable,
which is not straightforward to optimize, we introduce an
auxiliary variable Z and reformulate the problem as fol-
lows:

min
X,T ,t,Z

fgeom(X,T , t) + λ1fscore(X) + λ2freg(Z),

s.t. T = Z, xj ∈ A, ∀j = 1 : p. (9)

The corresponding augmented Lagrangian is:

L = fgeom(X,T , t) + λ1fscore(X) + λ2freg(Z)

+
〈
Y, T − Z

〉
+
ρ

2
‖T − Z‖2F . (10)

The ADMM algorithm iteratively updates variables by the
following steps to find the stationary point of (10):

t← arg min
t
L, (11)

X ← arg min
X
L, (12)

T ← arg min
T
L, (13)

Z ← arg min
Z
L, (14)

Y ← ρ(T − Z). (15)

It can be shown that (11), (12) and (13) are all quadrat-
ical programming problems, which have closed-form so-
lutions or can be solved efficiently using existing convex
solvers. (14) is a spectral-norm regularized proximal prob-
lem, which also admits a closed-form solution [39].

4.3. Visibility Estimation

In model inference, only visible landmarks should be
considered. To estimate the unknown visibility, we adopt
the following strategy. We first assume that all landmarks
are visible and solve our model in (8) to obtain a rough es-
timate of the viewpoint. Since the landmark visibility of a
car only depends on the aspect graph, the roughly estimated
viewpoint can give us a good estimate of the landmark vis-
ibility. We observed that our model could reliably estimate
the coarse view by assuming the full visibility, which might
be attributed to the global optimization. After obtaining the
visibility, we solve our model again by only considering the
visible landmarks. The full shape can be reconstructed by
the linear combination of full meshes of basis shapes after
the coefficients are estimated.

4.4. Successive Refinement

The relaxation of binary selection vectors xjs in (8) may
yield inaccurate localization, since it allows the landmark
to be located inside the convex hull of the hypotheses. To
improve the precision, we apply the following scheme: we
solve our model in (8) repeatedly, and in each iteration we
define a trust region based on the previous result for each
landmark and merely keep the hypotheses inside the trust
region as the input to fit the model again. We use three
iterations. We can start from a large trust region to achieve
global fitting and gradually decrease the trust region size
in each iteration to reject outliers and improve localization.
This successive refinement scheme has been widely-used
for feature matching [24, 21].

5. Experiments

In this section, we evaluate our method (PopUp) in terms
of both shape and pose estimation accuracy. The experi-
ments are carried out on the Fine Grained 3D Car dataset
(FG3DCar) [27] and PASCAL3D [35]. Both datasets have
landmark locations in the image and pose annotation for 3D
objects.



Method meanAPD (SL) meanAPD
PopUp Mean shape 16.5 20.6
PopUp Class mean 15.4 18.9
PopUp Shape space 14.6 17.7
FG3D Class mean - 18.1
FG3D Shape space - 20.3

Table 3: Model fitting error of PopUp versus FG3D in terms
of mean APD in pixels evaluated on 52 selected landmarks
(SL) and 64 landmarks provided in the dataset.

5.1. FG3D Car Dataset

FG3DCar dataset consists of 300 images with 30 differ-
ent car models of 6 car types under different viewing angles.
Each car instance is associated a shape model of 256 3D
landmark points and their projected 2D locations annotated
in the image as well as 3D pose annotation. We perform
the following evaluations: First, we compare the accuracy
of pose and shape estimation to the iterative model fitting
method of [27] (FG3D) in terms of 2D landmark projection
error. Second, we compare the coarse viewpoint estima-
tion error to viewpoint-DPM (VDPM) [15, 35]. In addition,
since our viewpoint estimation is continuous, we also show
the angular errors comparing to the groundtruth annotation.
Through out the experiments, we follow the same training-
testing split as [27].

We learn a mixture of discriminative part models of three
components for each of 256 landmark points as described
in Section 3. The Average Precision (AP) of the landmark
detection is evaluated on the training set. We count a de-
tection as true positive only if the detected location is close
to the annotated location. We optimize the landmark selec-
tion with unary cost as 1 - AP of each landmark and pair-
wise cost as the average pairwise 3D distance over all the
3D models. 52 out of 256 landmark points are selected with
MIP optimization while FG3DCar provides 62 manually se-
lected landmark. To build the shape models, we learned a
dictionary consisting of 10 basis shapes from the 3D models
provided in the FG3DCar dataset.

Note that, unlike FG3D, our method does not need an
external object detector to initialize either the location and
scale in the image or coarse landmark locations. We per-
form pose and shape estimation on the original image with
background clutter.

3D Shape Estimation 3D Shape estimation accuracy is
evaluated in terms of meanAPD which is the average land-
mark projection error in pixels over the landmarks and the
test instances. In the following experiments, we investigate
the effect of using different 3D shapes on the model fitting
error. We compare three setups with different basis shapes:
only the mean shape, class-mean shapes and the learned
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Figure 3: Car type specific meanAPD of PopUp versus
FG3D with mean prior and class prior. Comparing to the
FG3D method, our method achieves lower meanAPD on
most car types. For the type of pickup truck, our method
significantly outperforms FG3D.

Accuracy
Method 40◦ per view 20◦ per view
VDPM 82.7% 71.3%
PopUp 89.3% 84.7%

Table 4: Coarse viewpoint estimation accuracy versus
VDPM evaluated on the FG3DCar dataset. Accuracies are
compared with two discretization schemes, 20 degrees per
coarse viewpoint and 40 degrees per coarse viewpoint.

0 10 20 30 40 50 60 70 80
Degree

Figure 4: Continuous viewpoint (azimuth) error comparing
to the groundtruth on all 150 test images in the FG3DCar
dataset. The mean error is 3.4 in degrees.

shape space (10 basis shapes). The middle column of Ta-
ble 3 shows the fitting error on selected discriminative land-
marks. The fitting error decreases when we use the shape
space instead of the mean shape or the class mean, which
validates the use of shape space to express intra-class shape
variation.

Since the selected discriminative landmarks are not iden-
tical to the landmarks provided in the FG3DCar dataset, we
also compare the meanAPD on the landmarks provided in
the dataset. Our method outperforms FG3D using the shape
space without knowing the class type. Note that, their de-
tectors are trained on the manually selected 64 landmarks
provided in the dataset while our detectors are trained on
the 52 automatic selected discriminative landmarks.

Although our objective is to optimize the projection er-
ror on the discriminative landmarks, the fitting error on the
dataset provided landmarks is also minimized. This shows



Method Views bicycle bus car mbike
PopUp (ours) 4 42.6 49.3 29.8 39.9

8 33.2 36.7 27.4 24.4
16 16.9 40.7 21.4 16.6
24 13.0 31.5 16.0 11.3

VDPM[35] 4 41.7 26.1 20.2 30.4
8 36.5 35.5 23.5 25.1

16 18.4 46.9 18.1 16.1
24 14.3 39.2 13.7 10.1

Ghodrati et al.[10] 4 34.4 50.7 28.9 29.4
8 27.6 50.3 26.6 24.7

16 18.0 42.9 19.6 15.9
24 12.6 40.2 15.9 13.2

DPM-3D[30] 4 43.9 50.7 36.9 31.8
8 40.3 50.3 36.6 32.0

16 22.9 42.9 29.6 16.7
24 16.7 42.1 24.6 10.5

Table 5: Average (discrete) Viewpoint Accuracy on four
categories of PASCAL3D dataset.

the effectiveness of the landmark selection process. The er-
ror is reported on the same scale as FG3D. Figure 3 shows
the per class 3D model fitting error. Our method outper-
forms FG3D on most class types with particular success on
the pickup trucks.

Viewpoint Estimation We compare PopUp to VDPM in
discrete viewpoint estimation accuracy. For VDPM we train
two sets of baseline VDPM with coarse viewpoints (az-
imuth) of every 20 degrees and every 40 degrees for each
view. Each component of VDPM corresponds to a view-
point label. During inference, the viewpoint of the test car
instance is predicted as the training viewpoint of the max
scoring component. For PopUp, the estimated continuous
viewpoint is discretized in the same way as VDPM. Table
4 shows the comparison of the two methods. In both two
cases, PopUp outperforms VDPM. We further analyze the
estimation error of PopUp by looking at continuous view-
point estimation error and show that the majority error is
introduced by discretization. We compare our estimation
to the ground-truth viewpoint (azimuth) and report the ab-
solute angular value in Figure 4. The mean error over the
whole test set is only 3.4 in degree.

In addition to the quantitative evaluations, we show qual-
itative results on the test images from FG3DCar in Figure
6, where we project the 3D model wireframe with the esti-
mated pose and shape on to the image. We also show the
textured model rendered at novel views.

5.2. PASCAL3D Dataset

The PASCAL3D dataset augments a subset of PASCAL
dataset [7] with 3D models and pose annotations. PAS-
CAL3D consists of images captured under various natural
conditions. Occlusions and various object sizes cast great
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Figure 5: Precision recall curves for continuous viewpoint
estimation on four categories of PASCAL3D, occluded in-
stances are excluded. The horizontal axis is the tolerance of
viewpoint error to count a prediction as correct, in the range
of [0, π/4]. The vertical axis shows the precision.

challenges to 3D estimation. We validate our method on
four categories of PASCAL3D (test set): bicycle, bus, car
and motorbike. Both discrete and continuous viewpoint ac-
curacies are evaluated. Part Detectors are trained on the
PASCAL3D training set. We use the provided landmarks
and 3D models.

For discrete viewpoint accuracy, we compare Average
Viewpoint Accuracy to recently reported state-of-art results
on the benchmark [35, 10, 30]. We use VDPM as base de-
tector and estimate viewpoint within each detection hypoth-
esis and quantize our continuous viewpoint output into dis-
crete bins. Table 5 shows the accuracy of viewpoint pre-
diction with different quantization of the azimuth angle,
namely 4, 8, 16 and 24 views. Our results are compara-
ble on different categories. While our model-based method
performs well on larger objects, statistical learning based
approaches as [30] have advantages on small and heavily
occluded instances in terms of viewpoint prediction.

We evaluated the continuous viewpoint accuracy on
non-occluded instances within groundtruth bounding boxes.
Figure 5 shows the precision-recall curves for four cat-
egories as the viewpoint error tolerance changes within
[0, π/4]. We can observe that for bus and car the precision
increases quickly as the angular tolerance increases from 0
to 10 degrees, meaning that the majority angular errors are
less than 10 degrees. Bus and car outperform bicycle and
motorbike with our method because their landmarks have
larger appearance variation. Figure 7 shows qualitative re-
sults with estimated visible landmarks reprojected.

We break down the running time of our system on a
3.3Ghz Intel i7 CPU and an Nvidia TitanZ GPU as the fol-
lowing. Estimating a single object instance in a PASCAL3D
image (500x300 pixels) requires: 0.08 seconds building
HOG pyramid; 1.41 seconds in filters convolution; 3.76 sec-
onds in CNN classification and 1.52 seconds in ADMM.



Figure 6: Example 3D estimation results from FG3D Car are shown. In the first two rows, the 3D wire frame of the car model
is projected on the image with estimated pose and shape. Red solid lines represent visible wire frames and blue dotted lines
represent invisible wire frames. In the last row, the textured 3D reconstructions of the cars in the second row are rendered at
novel viewpoints. (We use symmetry to texture the invisible faces).

Figure 7: Examples of landmark localization results from different categories of PASCAL3D are shown in the first two rows.
Visible 3D landmarks are projected back to the image. The yellow dots are groundtruth locations and the green dots are the
estimation. The last row shows example pop-up results of different object classes.

6. Conclusion

We proposed a novel approach for estimating the pose
and the shape of a 3D object from a single image. Our ap-
proach is based on a collection of automatically-selected
and discriminatively-trained 2D parts with a 3D shape-
space model to represent the geometric relation. In model

inference, we simultaneously localized the parts, estimated
the pose, and recovered the 3D shape by solving a convex
program with ADMM.
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