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Abstract— We present a novel approach for detecting objects
and estimating their 3D pose in single images of cluttered
scenes. Objects are given in terms of 3D models without
accompanying texture cues. A deformable parts-based model is
trained on clusters of silhouettes of similar poses and produces
hypotheses about possible object locations at test time. Objects
are simultaneously segmented and verified inside each hypoth-
esis bounding region by selecting the set of superpixels whose
collective shape matches the model silhouette. A final iteration
on the 6-DOF object pose minimizes the distance between the
selected image contours and the actual projection of the 3D
model. We demonstrate successful grasps using our detection
and pose estimate with a PR2 robot. Extensive evaluation with
a novel ground truth dataset shows the considerable benefit
of using shape-driven cues for detecting objects in heavily
cluttered scenes.

I. INTRODUCTION

In this paper, we address the problem of a robot grasping
3D objects of known 3D shape from their projections in
single images of cluttered scenes. In the context of object
grasping and manipulation, object recognition has always
been defined as simultaneous detection and segmentation in
the 2D image and 3D localization. 3D object recognition
has experienced a revived interest in both the robotics and
computer vision communities with RGB-D sensors having
simplified the foreground-background segmentation problem.
Nevertheless, difficulties remain as such sensors cannot gen-
erally be used in outdoor environments yet.

The goal of this paper is to detect and localize objects
in single view RGB images of environments containing
arbitrary ambient illumination and substantial clutter for the
purpose of autonomous grasping. Objects can be of arbitrary
color and interior texture and, thus, we assume knowledge
of only their 3D model without any appearance/texture
information. Using 3D models makes an object detector
immune to intra-class texture variations.

We further abstract the 3D model by only using its 2D
silhouette and thus detection is driven by the shape of the
3D object’s projected occluding boundary. Object silhouettes
with corresponding viewpoints that are tightly clustered on
the viewsphere are used as positive exemplars to train the
state-of-the-art Deformable Parts Model (DPM) discrimina-
tive classifier [1]. We term this shape-aware version S-DPM.
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Fig. 1: Demonstration of the proposed approach on a PR2
robot platform. a) Single view input image, with the object of
interest highlighted with a black rectangle. b) Object model
(in green) is projected with the estimated pose in 3D, ready
for grasping. The Kinect point cloud is shown for the purpose
of visualization.

This detector simultaneously detects the object and coarsely
estimates the object′s pose. The focus of the current paper is
on instance-based rather than category-based object detection
and localization; however, our approach can be extended
to multiple instance category recognition since S-DPM is
agnostic to whether the positive exemplars are multiple poses
from a single instance (as considered in the current paper)
or multiple poses from multiple instances.

We propose to use an S-DPM classifier as a first high
recall step yielding several bounding box hypotheses. Given
these hypotheses, we solve for segmentation and localization
simultaneously. After over-segmenting the hypothesis region
into superpixels, we select the superpixels that best match a
model boundary using a shape-based descriptor, the chordio-
gram [2]. A chordiogram-based matching distance is used to
compute the foreground segment and rerank the hypotheses.
Finally, using the full 3D model we estimate all 6-DOF of
the object by efficiently iterating on the pose and computing
matches using dynamic programming.

Our approach advances the state-of-the-art as follows:

• In terms of assumptions, our approach is among the
few in the literature that can detect 3D objects in
single images of cluttered scenes independent of their
appearance.

• It combines the high recall of an existing discriminative
classifier with the high precision of a holistic shape
descriptor achieving a simultaneous segmentation and
detection reranking.

• Due to the segmentation, it selects the correct image
contours to use for 3D pose refinement, a task that was
previously only possible with stereo or depth sensors.



Fig. 2: Overview of the proposed approach. From left-to-right: a) The input image. b) S-DPM inferences on the gPb contour
image yielding an object detection hypothesis. c) The hypothesis bounding box (red) is segmented into superpixels. d) The
set of superpixels with the closest chordiogram distance to the model silhouette is selected. Pose is iteratively refined such
that the model projection aligns well with the foreground mask silhouette. e) To visualize the pose accuracy, the side of the
3D model facing the camera is textured with the corresponding 2D pixel color; three textured synthetic views of the final
pose estimate are shown.

In the video supplement, we demonstrate our approach
with a (PR2) robot grasping 3D objects on a cluttered table
based on a single view RGB image. Figure 8 shows an
example of the process. We report 3D pose accuracy by
comparing the estimated pose rendered by the proposed
approach with a ground truth point cloud recovered with a
RGB-D sensor. Such grasping capability with accurate pose
is crucial for robot operation, where popular RGB-D sensors
cannot be used (e.g., outdoors) and stereo sensors are chal-
lenged by the uniformity of the object’s appearance within
their boundary. We also document an extensive evaluation
on outdoor imagery with diverse backgrounds. The dataset
contains a set of 3D object models, annotated single-view
imagery of heavily cluttered outdoor scenes1, and indoor
imagery of cluttered tabletops in RGB-D images.

II. RELATED WORK

Geometry-based object recognition arguably outdates
appearance-based approaches. A major advantage of these
approaches is their invariance to material properties, view-
point and illumination. We first survey approaches that use
a 3D model, either synthetic or obtained from 3D recon-
struction. Next, we describe approaches using multiple view
exemplars annotated with their pose. We close with a brief
description of 2D shape-based approaches and approaches
applied to RGB-D test data.

Early approaches based on using explicit 3D models are
summarized in Grimson’s book [3] and focus on efficient
techniques for voting in pose space. Horaud [4] investigated
object recognition under perspective projection using a con-
structive algorithm for objects that contain straight contours
and planar faces. Hausler [5] derived an analytical method
for alignment under perspective projection using the Hough
transform and global geometric constraints. Aspect graphs in
their strict mathematical definition (each node sees the same

1The annotated dataset and 3D models are available at the project
page: http://www.seas.upenn.edu/˜menglong/outdoor-
3d-objects.html

set of singularities) were not considered practical enough
for recognition tasks but the notion of sampling of the
view-space for the purpose of recognition was introduced
again in [6] which were applied in single images with no
background. A Bayesian method for 3D reconstruction from
a single image was proposed based on the contours of objects
with sharp surface intersections [7]. Sethi et al. [8] compute
global invariant signatures for each object from its silhouette
under weak perspective projection. This approach was later
extended [9] to perspective projection by sampling a large set
of epipoles for each image to account for a range of potential
viewpoints. Liebelt et al. work with a view space of rendered
models in [10] and a generative geometry representation
is developed in [11]. Villamizar et al. [12] use a shared
feature database that creates pose hypotheses verified by a
Random Fern pose specific classifier. In [13], a 3D point
cloud model is extracted from multiple view exemplars for
clustering pose specific appearance features. Others extend
deformable part models to combine viewpoint estimates and
3D parts consistent across viewpoints, e.g., [14]. In [15], a
novel combination of local and global geometric cues was
used to filter 2D image to 3D model correspondences.

Others have pursued approaches that not only segment the
object and estimate the 3D pose but also adjusts the 3D shape
of the object model. For instance, Gaussian Process Latent
Variable Models were used for the dimensionality reduction
of the manifold of shapes and a two-step iteration optimizes
over shape and pose, respectively [16]. The drawback of
these approaches is that in the case of scene clutter they
do not consider the selection of image contours. Further, in
some cases tracking is used for finding the correct shape.
This limits applicability to the analysis of image sequences,
rather than a single image, as is the focus in the current
paper.

Our approach resembles early proposals that avoid ap-
pearance cues and uses only the silhouette boundary, e.g.,
[6]. None of the above or the exemplar-based approaches
surveyed below address the amount of clutter considered here



and in most cases the object of interest occupies a significant
portion of the field of view.

Early view exemplar-based approaches typically assume
an orthographic projection model that simplifies the analysis.
Ullman [17] represented a 3D object by a linear combina-
tion of a small number of images enabling an alignment
of the unknown object with a model by computing the
coefficients of the linear combination, and, thus, reducing
the problem to 2D. In [18], this approach was generalized
to objects bounded by smooth surfaces, under orthographic
projection, based on the estimation of curvature from three
or five images. Much of the multiview object detector work
based on discrete 2D views (e.g., [19]) has been founded
on successful approaches to single view object detection,
e.g., [1]. Savarese and Fei-Fei [20] presented an approach
for object categorization that combines appearance-based
descriptors including the canonical view for each part, and
transformations between parts. This approach reasons about
3D surfaces based on image appearance features. In [21],
detection is achieved simultaneously with contour and pose
selection using convex relaxation. Hsiao et al. [22] also
use exemplars for feature correspondences and show that
ambiguity should be resolved during hypothesis testing and
not at the matching phase. A drawback of these approaches is
their reliance on discriminative texture-based features that are
hardly present for the types of textureless objects considered
in the current paper.

As far as RGB-D training and test examples are concerned,
the most general and representative approach is [23]. Here,
an object-pose tree structure was proposed that simultane-
ously detects and selects the correct object category and
instance, and refines the pose. In [24], a viewpoint feature
histogram is proposed for detection and pose estimation.
Several similar representations are now available in the
Point Cloud Library (PCL) [25]. We will not delve here
into approaches that extract the target objects during scene
parsing in RGB-D images but refer the reader to [26] and
the citations therein.

The 2D-shape descriptor, chordiogram [2], we use belongs
to approaches based on the optimal assembly of image
regions. Given an over-segmented image (i.e., superpixels),
these approaches determine a subset of spatially contiguous
regions whose collective shape [2] or appearance [27] fea-
tures optimize a particular similarity measure with respect
to a given object model. An appealing property of region-
based methods is that they specify the image domain where
the object-related features are computed and thus avoid con-
taminating objected-related measurements from background
clutter.

III. TECHNICAL APPROACH

An overview of the components of our approach is shown
in Fig. 2. 3D models are acquired using a low-cost depth
sensor (Sec. III-A). To detect an object robustly based only
on shape information, the gPb contour detector [28] is
applied to the RGB input imagery (Sec. III-B). Detected
contours are fed into a parts-based object detector trained

Fig. 3: Comparison of the two edge detection results on
same image. (left-to-right) Input image, Canny edge and gPb,
respectively.

on model silhouettes (Sec. III-C). Detection hypotheses are
over-segmented and shape verification simultaneously com-
putes the foreground segments and reranks the hypotheses
(Sec. III-E). Section III-D describes the shape descriptor used
for shape verification. The obtained object mask enables the
application of an iterative 3D pose refinement algorithm to
accurately recover the 6-DOF object pose based on the initial
coarse pose estimate rendered by the object detector (Sec.
III-F).

A. 3D model acquisition and rendering

3D CAD models have been shown to be very useful for
object detection and pose estimation both in 2D images and
3D point clouds. We utilize a low-cost RGB-D depth sensor
and a dense surface reconstruction algorithm, KinectFusion
[29], to efficiently reconstruct 3D object models from the
depth measurements of real objects. The 3D object model is
acquired on a turntable with the camera pointing in a fixed
position. After the model is reconstructed with the scene, we
manually remove the background and fill holes in the model.

To render object silhouettes from arbitrary poses, we
synthesize a virtual camera at discretized viewpoints around
the object center at a fixed distance. Each viewpoint is
parameterized by the azimuth, a, elevation, e, and distance, d,
of the camera relative to the object. Viewpoints are uniformly
sampled on the viewsphere at a fixed distance and at every
ten degrees for both the azimuth and elevation.

B. Image feature

Our approach to shape-based recognition benefits from
recent advances in image contour detection. In unconstrained
natural environments, the Canny edge detector [30] generally
responds uniformly to both object occlusion boundaries and
texture. One can falsely piece together the silhouette of a
target object from a dense set of edge pixels. The state-
of-the-art contour detection algorithm gPb [28] computes
the likelihood of each pixel being an object contour and
thus suppresses many edges due to texture/clutter. Figure 3
shows an example of Canny edge detection and gPb on the
same input image. Compared to Canny edges, gPb suppresses
ubiquitous edge responses from background clutter.

Given detected contours in the image, we seek to localize
the subset of contour pixels that best represent the object
silhouette. We will show that for cluttered scenes, discrimi-
native power is essential to achieve high recall with desired
precision.



Fig. 4: Spray bottle detection using S-DPM. (first row, left-
to-right) Root appearance model, part appearance models
centered at their respective anchor points and the quadratic
deformation cost; brighter regions indicate larger penalty
cost. (second row) Input image and detection response map
of the spray-bottle; red, yellow and blue indicate large,
intermediate and low detection responses, respectively.

C. Object detection

The Deformable Parts Model (DPM) [1] is arguably the
most successful object detector to-date. DPM is a star-
structured conditional random field (CRF), with a root part,
F0, capturing the holistic appearance of the object and
several parts (P0, . . . , Pn) connected to the root where Pi =
(Fi, vi, si, ai, bi). Each model part has a default relative
position (the anchor point), vi, with respect to the root
position. Parts are also allowed to translate around the anchor
point with a quadratic offset distance penalty, parameterized
by the coefficients ai and bi. The anchor points are learned
from the training data and the scales of the root and parts,
si, are fixed. The detection score is defined as:

n∑

i=0

Fi · φ(H, pi)−
n∑

i=1

ai · (x̃i, ỹi) + bi · (x̃i2, ỹi2), (1)

where φ(H, pi) is the histogram of gradients (HOG) [31]
feature extracted at image location pi, and (x̃i, ỹi) is the
offset to the part anchor point with respect to the root position
p0. At test time, the root and part model weights are each
separately convolved with the HOG feature of the input
image. Due to the star structure of the model, maximizing the
above score function at each image location can be computed
efficiently via dynamic programming. To deal with intra-
class variation, DPM is generalized by composing several
components, each trained on a subset of training instances
of similar aspect ratio. We refer to [1] for more details.

To simultaneously detect an object and coarsely estimate
its pose from the edge map using only model silhouette
shape information, we train a shape-aware modified version
of DPM, which we term S-DPM. Each component of the

learned S-DPM corresponds to a coarse pose of the object.
More specifically, the silhouettes of the synthetic views of
the object are clustered into 16 discrete poses by grouping
nearby viewpoints. A S-DPM component is trained based
on the silhouettes of a coarse pose cluster used as positive
training data and silhouettes of other poses and objects
and random background edges used as negatives. Figure 4
shows an example of a trained spray bottle model. During
inference, each of the model components are evaluated on the
input contour imagery and the hypotheses with a detection
score above a threshold are retained. Detections of different
components are combined via non-maximum suppression.
This step retains high scoring detections and filters out
neighboring lower scoring ones whose corresponding 2D
bounding box overlaps with that of the local maximum by
greater than 50% (PASCAL criteria [32]). The coarse pose of
the object is determined by the maximum scoring component
at each image location.

D. Shape descriptor

We represent the holistic shape of each S-DPM detected
object with the chordiogram descriptor [2]. Given the ob-
ject silhouette, this representation captures the distribution
of geometric relationships (relative location and normals)
between pairs of boundary edges, termed chords. Formally,
the chordiogram is a K-dimensional histogram of all chord
features on the boundary of a segmented object. A chord
is a pair of points (p, q) on the boundary points. Chord
feature dpq = (lpq, ψpq, θp − ψpq, θq − ψpq)

> is defined
by chord vector length lpq , orientation ψpq and normals
θp and θq of the object boundary at p and q. The edge
normal direction points towards the segment interior to
distinguish the same edge with different foreground selection
of bordering superpixels. Figure 5 shows two examples of
chord features and their corresponding chordiogram feature
bins when the bordering foreground superpixels differ. The
chordiogram is translation invariant since it only relates the
relative position of boundary pixels rather than the absolute
position in the image.

E. Shape verification for silhouette extraction

We use the chordiogram descriptor for two tasks: (i) to
recover the object foreground mask (i.e., the silhouette) for
accurate 3D pose estimation and (ii) to improve detection
precision and recall by verifying that the shape of the
foreground segmentation resembles the model mask.

The fact that S-DPM operates on HOG features provides
flexibility in dealing with contour extraction measurement
noise and local shape variance due to pose variation. How-
ever, S-DPM only outputs the detections of the object
hypotheses rather than the exact location of the object
contour. Even in the object hypothesis windows, the subset
of edge pixels that correspond to the object silhouette is
not apparent. In addition, contour-based object detection in
cluttered scenes is susceptible to false detections caused by
piecing together irrelevant contours.



Figure 2. Left: Example of a configuration feature fpq (see
Sec. 3.1); Right: A chordiogram d of the figure segmentation (we
plot only the length l and orientation  dimensions of the descrip-
tor). d can be decomposed as the sum of the descriptors of indi-
vidual chords (bottom right).

terms:

EBoSS(s) = match(s, m) + group(s) (1)

In the following, we describe our shape representation and
the terms of the model.

3.1. Chordiograms as Shape Representation

To evaluate the similarity between a figure/ground seg-
mentation and the model mask we use a global boundary-
based shape descriptor, called the chordiogram. It is in-
spired by the Gestalt principle postulating that shape is per-
ceived as whole [18], as well as by the success of contour-
based shape descriptors [1].

To define a chordiogram, consider all possible pairs of
boundary edges of a segmented object, called chords. Each
chord captures the geometric configuration of two bound-
ary edges, and their distribution can be used to describe
the global shape. More precisely, for each chord (p, q),
its configuration is described as: the length lpq and the
orientation  pq of the vector connecting p and q as well
as the orientations ✓p and ✓q of the normals to the seg-
mentation boundary at p and q (see Fig. 2, left). The lat-
ter orientations are defined such that they point towards
the object interior. Note that in this way we capture not
only the boundary but also the object interior. Thus, the
configuration features of a chord (p, q) can be written as:
fpq = (✓p� pq, ✓q� pq, lpq,  pq)

T , where the normal ori-
entations are w. r. t.  pq. We describe the set of all configu-
rations, by defining the chordiogram d as a K-dimensional
histogram of the above features for all chords:

dk = #{(p, q)|fp,q 2 bin(k)} k = 1 . . . K (2)

The lengths lpq are binned together in a log space, which
allows for larger shape deformation between points lying
further apart, while all the angles are binned uniformly.

In terms of the definition of the pair configurations, the
above descriptor is similar to Shape Context [1], which cap-
tures the relation of contour edges only to a fixed offset
and is not global. The lack of an offset makes our descrip-
tor translation invariant; however, it is not scale or rotation

Figure 3. The top 2 principal components of chordiograms com-
puted using PCA for objects in the ETHZ Shape dataset (see
Sec. 5). (We omit the class ’Applelogos’ for the sake of cleaner
illustration ).

invariant. The descriptor is also inspired by Carlsson [2],
which captures topological properties of set of points.

Another important difference is that we capture the con-
tour orientation relative to object interior. Orienting the
boundary normals with respect to the interior contributes
to better discrimination, for example, between concave and
convex structures (configurations fpq and fp0q0 respectively
in Fig. 2), which otherwise would be indistinguishable. The
discriminative power can be seen on the right side of Fig. 3,
where objects of four different types are well separated us-
ing chordiograms, provided we compute it on segmented
objects. If, however, we use all image contours inside
the object bounding box, we obtain cluttered descriptors
(Fig. 3, left), which are much harder to separate. This moti-
vates the coupling of the chordiogram with figure segmen-
tation, as explained next. This coupling allows us to use
descriptor support which covers the whole object, thus the
descriptor is used globally.

3.2. Boundary Structure Matching

The matching term in Eq. (1) compares the chordiograms
of the model and an image segmentation. To formalize
the matching model, we need to express the descriptor as
a function of the object segmentation s. It will prove use-
ful to provide an equivalent definition to Eq. (2). Suppose
the contribution of a chord (p, q) to the descriptor is de-
noted by a chord descriptors dpq 2 {0, 1}K : (dpq)k = 1
iff fpq 2 bin(k). Then Eq. (2) can be expressed as a lin-
ear function of the chord contributions: d =

P
p,q dpq (see

Fig. 2, right). Hence, if we can express the selection of
chord descriptors as a function of s, then we can express the
chordiogram in terms of s. The main difficulty in the selec-
tion of chords lies, as we can see in Fig. 4, in the fact that
each chord can result in four different configuration features
depending on the position of the object interior with respect
to the chord edges: each edge has two possible normal ori-
entations depending on the object interior.

To relate this phenomenon to the figure/ground segmen-
tation, we express the descriptor in terms of a selection of
segment boundaries, which are related to the figure in the
image by assigning the boundaries to the segments compris-
ing the figure. This is motivated by the idea of figure/ground
organization of the image, where the figure is defined as re-
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Fig. 5: Chordiogram construction. The bold boundary in the
image on the left denotes the correct superpixel boundary of
the object. Gray highlighted regions denote the foreground
superpixels under consideration. At the two chords, pq and
p′q′, the features, fpq and fp′q′ , fall into different bins of
the histogram, i.e., the chordiogram shown on the right. At
each boundary point, the foreground selection of bordering
superpixels defines the normal direction.

To recover exact object contour pixel locations and reduce
false positives, an additional shape matching step is required
on top of the object hypotheses. Here, we propose using
the collective shape of a subset of superpixels within each
hypothesis region to verify the presence of an object.

For each detection hypothesis region, superpixels are
computed directly from gPb [28]. Searching over the entire
space of superpixel subsets for the optimal match between
the collective shape of the superpixels and the object model
is combinatorial and impractical. Instead, we use a greedy
algorithm to efficiently perform the search. In practice, with
limited superpixels to select from, our greedy approach
recovers the correct region with high probability. Figure
6 shows example results of shape verification. The greedy
algorithm begins with a set of connected superpixels as a
seed region and greedily searches over adjacent superpixels,
picking the superpixel that yields the smallest χ2 distance to
the chordiogram of model silhouette. Intuitively, if we have
a set of superpixels forming a large portion of the object
with a few missing pieces, adding these pieces yields the best
score. The initial seeds are formed by choosing all triplets of
adjacent superpixels, and limiting examination to the top five
seeds that yield the smallest χ2 distance. The connectivity
graph of superpixels is a planar graph with limited node
degrees. The complexity of finding triplets in such a planar
graph is O(N logN) in the number of nodes.

Once the correct foreground superpixels are selected, the
detection bounding box is re-cropped to reflect the recovered
foreground mask. Empirically, this cropping step yields a
better localization of the detection result over the S-DPM,
as measured in terms of precision and recall, see Sec. IV
Edges of the foreground mask are extracted and used in the
subsequent processing stage for accurate 6-DoF continuous
pose estimation.

Fig. 6: Shape descriptor-based verification examples. (left-to-
right) Detection hypothesis window of the object, superpixel
over-segmentation of the hypothesis region, visualization of
the coarse object pose from the object detector and selected
foreground mask.

F. Pose refinement

Robotic grasping requires an accurate estimate of an
object’s 3D pose. To improve upon the coarse pose estimate
provided by the S-DPM, we perform a final iterative pose
refinement step to recover the full continuous 6-DoF pose.
This step is restricted to the region of the verified superpixel
mask.

Our iterative refinement process consists of two steps:
(i) determining the correspondence between the projected
occluding boundary of the 3D model and the contour points
along object segmentation mask, and (ii) estimating an
optimal object pose based on the correspondences.

The contour correspondences are estimated using dynamic
programming (DP) to ensure local matching smoothness.
Given the initial (coarse) pose output from the object detec-
tion stage, the 3D object model is rendered to the image and
its corresponding projected occluding boundary is extracted.
Each point on the contour is represented by a descriptor
capturing close-range shape information. The 31-dimensional
contour descriptor includes the gradient orientation of a con-
tour point (the central point) and the gradient orientations of
the nearest 15 points on each side of the central point along
the contour. The gradient orientation of the central point is
subtracted from all elements of the descriptor, which gives
in-plane rotation invariance. The matching cost between each
pair is set to be the l2 distance of the feature descriptor
extracted at each point. DP is then used to establish the
correspondences between contour points.



Fig. 7: Representative images from the introduced outdoor
dataset. The dataset was captured using a ground robot and
includes diverse terrains, e.g., rocks, sand and grass, with
illumination changes. Portions of the terrain are non-flat.
Objects are scattered around the scene and typically do not
occupy a major portion of the scene.

To estimate the refined pose we use the motion field
equation [33]:

u(x, y) =
1

Z
(xtz − tx) + ωx(xy)− ωy(x

2 + 1) + ωz(y)

v(x, y) =
1

Z
(ytz − ty)− ωx(y

2 + 1)− ωy(xy) + ωz(x),

where u(x, y), v(x, y) denote the horizontal and vertical
components of the displacement vectors, respectively, be-
tween the model and matched image contour points, com-
puted by DP, Z(x, y) denotes the depth of the 3D model
point for the current pose estimate and the Euler angles
(ωx, ωy, ωz) and 3D translation vector (tx, ty, tz) denote the
(locally) optimal motion of the object yielding the refined
pose. The motion update of the current pose is recovered
using least squares. This procedure is applied iteratively until
convergence. In practice, we usually observe fast conver-
gence with only three to five iterations. The running time of
the pose refinement is about one second on an Intel 2.4GHz
i7 CPU.

IV. EXPERIMENTS

Outdoor detection evaluation We introduce a challenging
outdoor dataset for 3D object detection containing heavy
background clutter. This dataset was collected from a moving
robot and consists of eight sequences containing a total
of 3403 test images; the dimensions of each image are
512 × 386. Figure 7 shows a set of representative imagery
from the introduced dataset. The scenes contain a variety
of terrains (e.g., grass, rock, sand, and wood) observed
under various illumination conditions. The dataset represents
the task of a robot navigating a complex environment and
searching for objects of interest. The objects of interest are

mostly comprised of textureless daily equipment, such as a
watering pot, gas tank, watering can, spray bottle, dust pan,
and liquid container. For each frame, 2D bounding boxes
that tightly outline each object are provided. Further, the
dataset includes the corresponding 3D model files used in
our empirical evaluation.

On the outdoor dataset, we performed a shape-based object
detection evaluation. We compared four methods, DOT [34],
S-DPM with only the root model, full S-DPM with root and
parts, and the full S-DPM plus shape verification (proposed
approach), on a detection task on the introduced dataset. Both
DOT and S-DPM used the same training instances from Sec.
III-A with a slight difference. For S-DPM, we trained one
model component for each of 16 discrete poses. For DOT,
we used the same quantization of the viewsphere but trained
with 10 different depths ranging from close to far in the
scene. During testing, S-DPM is run on different scales by
building an image pyramid. The input to both methods were
the same gPb thresholded images. In all our experiments,
the threshold is set to 40 (gPb responses range between 0
and 255), where edges with responses below the threshold
were suppressed. The default parameters of gPb were used.
We did not observe a noticeable difference in the detection
and pose estimate accuracy with varying the gPb parameter
settings.

Table III shows a comparison of the average precision
for detection on the outdoor dataset. The proposed approach
consisting of the full S-DPM plus shape verification achieves
the best mean average precision. It demonstrates that using
shape verification improves detection due to the refinement of
the bounding box to reflect the recovered silhouette. Full S-
DPM outperforms both the root only S-DPM and DOT. This
shows the benefit of the underlying flexibility in S-DPM.

Table top evaluation We evaluated our pose refinement
approach under two settings. First, we recorded an indoor
RGB-D dataset, with multiple objects on a table, from a
head mounted Kinect on a PR2 robot. The RGB-D data
is used as ground truth. We evaluated using three objects,
watering can, gas tank, watering pot, placed at two different
distances from the robot on the table and two different poses
for each distance. For each scene, the target object was
detected among all objects on the table and segmented using
shape verification, and then the 6-DoF pose was estimated, as
described in Sec. III-F. The model point cloud was projected
into the scene and Iterative Closest Point (ICP) [35] was
performed between the model point cloud and the Kinect
point cloud. We report ICP errors for both rotation and
translation in Tables I and II, resp. Errors in the rotations and
translations are small for different angles and different depth.
Translation errors in the X and Y directions are smaller than
in Z direction. Since Z is the depth direction, it is most
affected by the 3D model acquisition and robot calibration.
Both measurements show our method is robust and suitable
for grasping task.

In addition, using the object pose estimated from our
approach, we demonstrate with a PR2 robot successful



watering pot gas tank watering can spray bottle dust pan liquid container average AP
S-DPM full+shape 0.686 0.645 0.523 0.515 0.429 0.506 0.5507

S-DPM full 0.688 0.610 0.547 0.507 0.387 0.509 0.5413
S-DPM root only 0.469 0.535 0.433 0.436 0.295 0.436 0.4340

DOT 0.407 0.412 0.340 0.089 0.111 0.188 0.2578

TABLE III: Average precision on the introduced outdoor dataset.

Estimated Rotation Error
Roll Pitch Yaw Roll Pitch Yaw

dist1 1.65 48.44 -145.37 0.99 3.57 -1.63
watering 5.50 50.73 -22.37 -3.20 -3.92 -0.07

can dist2 -4.33 41.93 48.78 -3.20 -3.92 -0.07
2.44 49.60 -54.82 -0.12 1.95 -1.92

dist1 -0.43 59.20 -73.00 -1.25 -0.28 1.36
watering 0.69 51.90 156.86 -1.82 -0.63 -3.48

pot dist2 -10.43 66.93 38.28 -1.078 -6.67 -2.43
-0.633 52.24 -131.94 -0.21 1.14 -0.88

dist1 -0.15 50.58 -136.17 1.43 2.73 -4.58
gas 2.84 50.15 -51.15 -2.63 3.20 2.79
tank dist2 -2.44 48.24 129.43 -3.57 0.02 -2.14

-7.40 45.22 109.90 -1.55 -1.79 -1.03

TABLE I: Estimated absolute rotation of the object and error
in degrees.

Estimated Translation Error
X Y Z X Y Z

dist1 -46.5 -82.3 -1023.6 -1.14 -0.7 -2.8
watering -57.1 -86.4 -1023.2 -1.2 2.8 -7.2

can dist2 -85.1 183.2 -1182.9 3.6 3.6 4.8
-114.9 186.0 -1200.3 4.5 2.2 -5.1

dist1 16.4 -154.0 -1020.9 2.8 1.0 0.06
watering -117.6 -112.4 -1028.3 0.4 0.2 2.2

pot dist2 -6.8 32.7 -1051.2 2.0 -2.9 -3.5
-106.5 -6.6 -1053.1 -0.5 -0.2 -1.9

dist1 -23.8 21.2 -1061.2 -1.8 -0.9 -3.2
gas 19.5 -116.0 -958.8 -0.4 1.7 -3.2
tank dist2 -77.0 6.7 -1064.6 0.4 -0.9 -2.0

-111.3 178.9 -1200.8 0.6 -0.4 -1.4

TABLE II: Estimated absolute translation of the object and
error in centimeters.

detections and grasps of various objects from a cluttered
table. In Fig. 8, we show qualitative results of the PR2
successfully grasping various objects on a cluttered table.

V. CONCLUSION

We presented an integrated approach for detecting and lo-
calizing 3D objects using pure geometric information derived
from a database of 3D models. We create an initial set of
hypotheses with a state-of-the-art parts-based model trained
on clusters of poses. Detection hypotheses are segmented
and reranked by matching subsets of superpixels with model
boundary silhouettes using the chordiogram descriptor. The
resulting segmentation enables the refinement of 3D pose
in a small number of steps. Due to the holistic nature of
the chordiogram-based superpixel selection, our approach is
resistant to clutter. We demonstrate the grasps of texture-
less objects in difficult cluttered environments in the video
supplement.
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